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A numerical solution of the equal width wave equation, based on 
Galerkin’s method using cubic B-spline finite elements is used to 
simulate the migration and interaction of solitary waves. The interaction 
of two solitary waves is seen to cause the creation of a source for 
solitary waves. Usually these are of small magnitude, but when the 
amplitudes of the two interacting waves are equal and opposite 
the source produces trains of solitary waves whose amplitudes are of 
the same order as those of the initiating waves. The three invariants 
of the motion are evaluated to determine the conservation properties of 
the system. Finally, the temporal evolution of a Maxwellian initial pulse 
is studied. For small 6 (U, + UU, - SU, = 0) only positive waves are 
formed and the behaviour mimics that of the KdV and RLW equations. 
For larger values of d both positive and negative solitary waves are 
generated. 0 1992 Academic Press, Inc. 

Galerkin method, with cubic B-spline finite elements, 
which was used to obtain accurate and efficient numerical 
solutions to the RLW equation. Here we apply the same 
method to the solution of the EWE equation and study the 
migration of a solitary wave, the interaction of two solitary 
waves, and the evolution of a Maxwellian initial condition. 

2. THE GOVERNING EQUATION AND 
FINITE ELEMENT SOLUTION 

The EWE equation, derived for long waves propagating 
in the positive x-direction, has the form [3] 

1. INTRODUCTION 

The regularised long wave (RLW) equation is an alter- 
native description of non-linear dispersive waves to the 
more usual Kortewegde Vries (KdV) equation [ 11. It has 
solitary wave solutions of a rather general type [ 1,2]. 
A less well-known alternative, proposed by Morrison 
et al. [3], is the equal width equation (EWE) which also 
has solitary wave solutions, but of a less general type. 

Solitary waves are wave packets or pulses which 
propagate in non-linear dispersive media. Due to dynamical 
balance between the non-linear and dispersive effects these 
waves retain a stable wave form. A soliton is a very special 
type of solitary wave which also keeps its waveform after 
collision with other solitons. In particle physics and 
quantum mechanics it is standard practice to use the term 
soliton to designate both solutions to wave equations 
integrable via the inverse scattering transform, such as 
KdV, and also to designate localised solutions of non- 
integrable equations, such as RLW and EWE. We have 
adopted the more restricted definition for which only the 
first type qualifies for the name soliton; thus the solitary 
waves of the KdV equation are solitons, but those of the 
RLW and EWE equations are not [3-lo]. 

u,+ uu,-su,,,=o, (1) 

where 6 is a positive parameter and the subscripts x and t 
denote differentiation, with the physical boundary condi- 
tion U--f 0 as x + +co. In this paper we shall use periodic 
boundary conditions for a region a d x Q b. The form of the 
initial pulse will be chosen so that at large distances from the 
pulse 1 UI is extremely small and essentially attains the free 
space boundary condition U = 0. In the fluid problem U is 
related to the vertical displacement of the water surface, 
while in the plasma application U is the negative of the 
electrostatic potential. 

Although the EWE equation transforms into the RLW 
equation under UEWE --) U,,, + 1, the corresponding 
solutions of the EWE equation cannot be obtained from 
those of the RLW equation using this transformation as the 
boundary conditions in the two cases are different. 

The EWE equation has been solved numerically using the 
B-spline finite element formulation described in detail in 
Ref. [lo]. 

3. THE SIMULATIONS 

The EWE equation has, like the RLW equation, an 
analytic solution of the form [3] 

In a recent paper in the Journal [lo] we described a U(x, t)=3A sech*{k[x-x,-At]} (2) 
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where 

k=&,‘@, (3) 

and A is a constant. This solution corresponds to a solitary 
wave of magnitude 3A and width k, initially centred on x0, 
propagating to the right without change of shape at a steady 
velocity A. Here k depends only on 6 and not on A as does 
the corresponding constant for the RLW equation; thus for 
a given equation (fixed 6) all solitary waves have the same 
width, hence the name EWE. Waves exist with all possible 
velocities A, -cc d A < co, unlike the RLW equation for 
which there is the forbidden region 0 < A < 1. Although the 
solution (2) is obtained when the free space boundary 
condition 1 UI + 0 as 1x1 -+ cc is applied, it is also expected 
to be a very good approximation for large periodic systems. 

Olver [ 1 I] has shown that the EWE equation possesses 
only three polynomial invariants, corresponding to 
conservation of mass, momentum, and energy, which for 
the periodic boundary conditions have the form 

C, = jb Udx, 
u 

C,=J.‘(U2+6U;)dx, 
u (4) 

C, = j” U’ dx. 
0 

First, we consider the motion of a single solitary wave 
and take as initial condition 

U(x, 0) = 3A sech’ k(x -x0) (5) 

with A=l, k=$, and x,=15. The range 0~x680 is 
divided into 400 elements of equal length 0.2 and a time step 
At = 0.1 used. We observe the solitary wave move to the 
right unchanged in form and with a velocity A = 1. 

To examine more carefully the behaviour of the numeri- 
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TABLE I 

Single Solitary Wave Simulation 

Time C, C2 c3 L, x lo3 Height Posn 

0.1 12.oooo 28.7999 57.5999 0.2 2.9925 15.2 
2.1 12.oooo 28.7998 51.5995 3.5 2.9925 17.2 

36.1 11.9999 28.7997 57.5993 49.0 2.9949 51.2 
40.1 11.9999 28.7998 57.5995 54.2 2.9952 55.2 

cal scheme we use the L, norm to compare the numerical 
with the exact solution (2) and the quantities C,, C2, and 
C3 to measure conservation; see Table I. Changes in Cl, 
Cz, and C3 are satisfactorily small, each changing less than 
5 x lop4 % during the experiment. The L2 error is also small 
compared with values quoted by other authors for KdV 
simulations [12]. The change in the magnitude of the 
solitary wave over the period to t = 40 is only 0.09 %, during 
which time the velocity is constant at 1 to within 0.2 %. The 
speed and magnitude of the wave are mutually consistent 
with Eq. (2). Morrison et al. report that the primary error 
in their simulations is a secular drift in the wave speed which 
results in a change of about 1% over a period t = 40 [3]. 

Santarelli [4] has simulated the interaction of a positive 
and negative solitary wave, for the RLW equation, and 
observed the collision to produced additional pairs of 
daughter solitary waves emenating from the point of initial 
contact, an observation confirmed by Courtenay Lewis and 
Tjon [S] and Gardner and Gardner [lo]. We now repeat 
those experiments for the EWE equation, with 6 = 1, using 
as an initial condition solitary waves of similar magnitudes 
to those used by Santarelli, 

U(x, O)= u, + u2, (6) 
where 

Uj=3Ajsech2[$(x-z,-A,t)]. (7) 

A region 0~~~80 was used with A,=1.7, X,=23, 
A, = -3.4, X2 = 38, h = 0.1, and At = 0.05. 

0 10 20 30 40 50 60 70 80 
x 

FIG. 1. (a) The “Santarelli experiment” at time t = 16. (b) The “Santarelli experiment” at time r = 16 with expanded vertical scale to show the 
structure of the daughter waves. 
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Time 

TABLE II 

Santarelli Experiment 

c, c2 C3 

0 20.400 416.16 1980.9 
2 20.399 416.14 1980.8 
4 20.397 416.12 1980.5 
6 20.399 416.12 1980.6 
8 20.398 416.11 1980.5 

10 20.398 416.10 1980.4 
12 20.398 416.07 1980.3 
14 20.397 416.05 1980.1 
16 20.397 416.05 1980.1 

In Fig. la we show the state at time t = 16.0. The smaller 
of the original pair of waves now lies at x = 49, the larger 
(negative) wave is at x= 66, having exited the region 
through the left-hand side and reentered at the right: the 
boundary conditions are periodic. The amplitudes of these 
waves are virtually unchanged by the interaction. The inter- 
vals between 0 < x < 20 and 75 < x d 80 are the undisturbed 
parts of the region, away from the pulse, where the solution 
remains 0. The waves lying between x= 23 and x = 33 of 
magnitude 0.4 have resulted from the interaction. We have 
expanded the vertical scale in Fig. lb to show details of the 
structure of these waves. The area x = 28-29, where the 
curves cross the x-axis, is the site of the original collision. 
Daughter waves appear to have been created at this point. 
Their magnitude is small at about 0.40.5, so that their 
velocity is very small, about 0.1. At time t = 16 the larger 
(negative) wave lies at x = 66.6, and the smaller (positive) 
wave at x = 49. If they had progressed across the region 
without colliding they should have reached x = 63.6 and 
x = 50.2, respectively. These waves have therefore suffered 
phase shifts of Ax = +3 and Ax = - 1.2, respectively. 

The values of C,, CZ, and C3 throughout the simulation 
are shown in Table II. All change by less than 4 x 10P2 %. 

We have repeated this experiment with interacting waves 
of equal and opposite amplitude of 4.5, within a region 
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FIG. 2. The interaction of two solitary waves of equal and opposite 
amplitude. State at time t = 50. 

O<x<60, with A,=1.5, X,=23, AZ=-1.5, X2=38, 
h = 0.2, and At = 0.1. The interesting feature of this numeri- 
cal experiment is that the invariants C, and C3 correspond- 
ing to conservation of mass and energy should remain zero 
throughout. The state at time t = 50 is shown in Fig. 2, 
when C, = 0.00022 and C, = 0.034. The interaction of the 
two solitary waves of equal but opposite magnitude has 
resulted in the creation of a source of solitary waves, 
with amplitudes of the same order as the originating waves. 
A train of positive solitary waves of slowly decreasing 
amplitude is progressing to the right, while a similar train of 
negative solitary waves is moving left, away from the 
collision site. By t = 60, the first four waves to emerge 
have amplitudes of about 1.78, 1.47, 1.36, 1.15. 

In several simulations we have observed the emergence of 
what appears to be a solitary wave source. It is known 
that waves are either created or absorbed at a resonance 
where the phase velocity (and group velocity) is zero. For 
the EWE which has the linear dispersion relationship 
w( 1 + k2) = 0 [3] these conditions are clearly possible. 

Abdulloev et al. [2] have studied the interaction of two 
positive solitary waves for the RLW equation and observed 
an almost stationary rarefaction wave of small amplitude 
(- 10e3) with an exceeding low velocity (< 3 x 10P5) left 
behind the two diverging solitary waves of magnitudes 
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FIG. 3. (a) The “Abdulleov experiment” at time t = 25. (b) The “Abdulleov experiment” at time t = 25 with expanded vertical scale to show the 
trailing waves. 
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FIG. 4. The two negative waves, time f = 20, with trailing waves. 

about 6 and 2. We study a similar situation using as the 
initial condition Eqs. (14)-( 15) over the region 0 < x < 120 
taking6=1A,=3.4,.?,=15,A,=1.7,&=35,h=O.l,and 
At = 0.05. 

The configuration at time t = 25, which is sometime after 
the interaction is complete, is shown in Fig. 3a. The waves 
have apparently passed through one another and emerged 
unchanged by the encounter. Phase shifts of Ax = +3, for 
the larger wave, and of Ax = -3, for the smaller wave, were 
obtained. Under magnification, however, Fig. 3b, we 
observe waves of small amplitude, average - 5 x lo-‘, 
trailing behind the solitary waves. We believe that this 
collision too has resulted in the creation of a solitary wave 
source sited at x = 49. 

In Table III we record the values of the invariants C,, Cl, 
and C, for times throughout the simulation. We see that 
each is satisfactorily conserved, as each changes by less than 
5 x lo-* % during the computer run. 

In addition we have studied the interaction of two 
negative solitary waves over the region 0 d x d 120, using 
the previous initial condition with 6 = 1, A, = -3.4, 
X1=82, A,= -1.7,&=67,h=O.l, and At=0.05. 

After the interaction is completed the two solitary waves 
have changed little but there is some evidence of an addi- 
tional disturbance. Under magnification, Fig. 4, we see that 
waves of small amplitude - 5 x lo-’ are trailing behind the 
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FIG. 5. Maxwellian initial condition: 6 = 0.01; state at time t = 41. 

TABLE III 

Abdulloev Experiment 

Time Cl C2 c3 

0 61.200 416.16 2546.9 
4 61.199 416.15 2546.8 
8 61.197 416.12 2546.3 

12 61.197 416.12 2546.3 
16 61.195 416.10 2546.3 
20 61.195 416.07 2546.0 
24 61.190 416.04 2545.8 
25 61.190 416.04 2545.7 

solitary waves. The larger wave has suffered a phase change 
of Ax= +2, while the smaller has a phase change of 
Ax = -3.5. 

The values taken by the invariants Ci, C2, and C3 
over the period of simulation are given in Table IV. All 
are satisfactorily conserved; C, changes by less than 
9 x lo-*%, C2 by less than 0.2%, and C, by less than 
0.26%. These values are of the same order as those found 
for the Santarelli experiment. 

Finally, we have examined, for various values of the 
parameter 6, the evolution of an initial Maxwellian pulse 
into solitary waves, using as initial condition 

U(x, 0) = exp( -(x - 7)*). (8) 

For the KdV equation this initial pulse developed into a 
train of solitons when 6 was greater than a critical value 
6,,= 0.0625; otherwise a rapidly oscillating wave packet 
resulted [13]. In the case of the RLW equation similar 
events were observed but the development was never clean 
and oscillating tails of small magnitude always trailed 
behind the solitary waves [lo]. 

With 6 = 0.01 the final state is made up from at least seven 
solitary waves, Fig. 5; the peaks of the we&developed 
waves lie on a straight line so that their velocities are 
linearly dependent on their amplitudes and, in fact, obey a 
relationship consistent with Eq. (2). On magnification of 

TABLE IV 

Two Negative Solitary Waves 

Time c, C2 C3 

0 61.20 416.2 2547 
4 61.19 416.0 2545 
8 61.18 416.0 2541 

12 61.17 415.8 2543 
16 61.16 415.7 2542 
20 61.15 415.5 2540 
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TABLE V 

6 = 0.01 

Time Cl c2 c3 

0.1 1.773 1.266 1.023 
4.1 1.772 1.259 1.064 
8.1 1.770 1.256 1.067 

12.1 1.769 1.254 1.064 
20.0 1.767 1.250 1.048 
31.0 1.763 1.244 1.049 
41.0 1.761 1.240 1.050 
51.0 1.758 1.236 1.035 

TABLE VI 

6 = 0.04 

Time c, G C3 

0.10 1.7725 1.3034 1.0233 
10.1 1.7724 1.3019 1.0262 
20.0 1.7723 1.3018 1.0260 
30.0 1.7723 1.3016 1.0260 
50.0 1.7721 1.3015 1.0257 

TABLE VII 

6 = 0.2 

Time Cl C2 c3 

0.1 1.77245 1.50391 1.02333 
4.1 1.77246 1.50383 1.02338 
8.1 1.77245 1.50388 1.02336 

10.1 1.77246 1.50388 1.02335 
20.0 1.77246 1.50388 1.02335 
30.0 1.77246 1.50387 1.02335 
40.0 1.71246 1.50387 1.02335 

TABLE VIII 

6=1 

Time C, C* C3 

0.15 1.77245 2.5048 1.0233 
12.15 1.77246 2.5051 1.0231 
24.15 1.77245 2.5060 1.0231 
30 1.77245 2.5060 1.023 1 
42 1.77245 2.5060 1.023 1 
54 1.77245 2.5060 1.023 1 
60 1.77245 2.5060 1.0231 
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FIG. 6. Maxwellian initial condition: 6 = 0.04, state at time t = 49. 

the vertical scale no oscillating tail is evident. The invariants 
for this problem are listed in Table V. Observed changes are 
each less than 5 % for a run up to t = 51. 

For 6 = 0.04 the Maxwellian develops into a train of at 
least four solitary waves with magnitude and velocity 
consistent with Eq. (2), but again no oscillating tail is 
observed; see Fig. 6. The values of the quantities C, , C,, 
and C3 are given in Table VI; each is satisfactorily constant 
as the maximum change is less than 0.01%. 

When 6 = 0.2, a different behaviour is observed. The state 
at time t = 40 is shown in Fig. 7 with a magnified vertical 
scale. We see an isolated disturbance of small magnitude 
-0.03 trailing behind the solitary wave which has a 
measured velocity of 0.34 f 0.004 and an amplitude of 1.024 
which implies a theoretical velocity of 0.341, in good agree- 
ment with the measured value. The invariants C, , Cz, and 
C3 are given in Table VII; all vary by less than 0.005 % over 
the period to t = 40. 

For values of 6 greater than a critical value, which for the 
KdV equation is 6 = 0.0625 and for the RLW equation is 
somewhat larger, solitary waves are not expected [ 131. We 
have set up a simulation for 6 = 1 which for both KdV and 
RLW equations results in the development of a rapidly 
oscillating wave packet. In the present case we find that 
the Maxwellian develops into a pair of solitary waves, one 
of which has a negative amplitude -0.359 and velocity 

0.04 , I I 1 

Fig. 7. Maxwellian initial condition: 6 = 0.2, state at time t = 40 with 
expanded vertical scale to show the trailing waves. 
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FIG. 8. Maxwellian initial condition: 6 = 1, state at time t = 36. 

-0.115 ) 0.004, while the other has amplitude 0.807 and 
velcity 0.265 f 0.004, each of which is consistent with 
Eq. (2). There is evidence that additional small waves may 
occur between the two main solitary waves; see Fig. 8. The 
invariants C, , Cz, and C, remain constant to within 0.05 % 
throughout the run; see Table VIII. 

4. CONCLUSIONS 

We have shown that the Galerkin method with B-spline 
finite elements can faithfully represent the amplitude, posi- 
tion, and velocity of a single solitary wave. The interaction 
of two solitary waves appears to cause the creation of a 
source of both positive and negative solitary waves. The 
three invariants of motion are sensibly constant in all the 
computer simulations described here, so that the algorithm 
can fairly be described as conservative. We have further 
used the algorithm to simulate the generation of EWE- 
solitary waves from a Maxwellian initial pulse. We find that 
the behaviour is sienilicantlv different from that of both the 

KdV and RLW equations. For 6 =O.Ol and 0.04 the 
Maxwellian initial condition develops into a train of 
positive solitary waves mimicking the behaviour of the KdV 
equation, and unlike the RLW equation no oscillating tail 
is observed. This is consistent with the observation by 
Morrison et al. [S] that EWE does not have radiation solu- 
tions, which implies that all solutions are solitary waves. 
When 6 = 0.2 we obtain a single large solitary wave, plus 
what appears to be a source of both positive and negative 
solitary waves of very small amplitude. For 6 = 1 both the 
KdV and RLW equations develop, not solitary waves but, 
rapidly oscillating wave packets. For the EWE equation we 
find that a solitary wave of amplitude -0.8 plus one of 
amplitude - -0.4 is generated, together with what appears 
to be a source of small amplitude solitary waves. 
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